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ABSTRACT

The problems 1 and 2 in Category 3 are solved using the space-time conservation element and solution
element (CE/SE) method. Problem 1 concerns the acoustic field generated by the interaction of a convected
harmonic vortical gust with a single isolated airfoil. Problem 2 models rotor-stator interaction in a 2D
cascade. Both problems involve complex geometries and flow physics including vortex shedding and acoustic
radiation. An unstructured triangular mesh is used to solve both problems. For problem 2, the Giles
approach is incorporated with the CE/SE method to handle non-equal pitches of the rotor and stator.
Numerical solution of both near and far fields of problem 1 are presented and compared with a frequency-
domain solver GUST3D and a time-domain high-order Discontinuous Spectra Element Method (DSEM)
solutions. For problem 2, numerical solutions on the blade surface, inlet and outlet planes are presented.

1. INTRODUCTION

The method of space-time conservation element and solution element (abbreviated as the CE/SE
method) is a finite volume method with second-order accuracy in both space and time. The flux con-
servation is enforced in both space and time instead of space only. It has low numerical dissipation and
dispersion errors. It uses simple non-reflecting boundary conditions and is compatible with unstructured
meshes. It is simple, flexible, and generate reasonably accurate solutions. The CE/SE method has been
successfully applied to solve numerous practical problems, especially aeroacoustic problems. Details of the
numerical algorithm based on the CE/SE method are referred to [1-4]. Applications of the CE/SE method
to Computational AeroAcoustic (CAA) problems are referred to [5-10].

2. CATEGORY 3: PROBLEM 1

Consider a Joukowski airfoil in a two-dimensional gust. The geometry of the Joukowski airfoil and mean
flow conditions can be found in [11]. The incoming gust has velocity fluctuations described as follows:

u' % (v, ky/|K|) cos(ksT + kyy — wt) (1)
o (vg k2 /|K|) cos(kzx + kyy — wt) )

and £ £
p’dé() and p'dé() (3)

where (i) vy = 0.02,andk, = k, = 0.1,1.0,3.0, (ii) |k| is the absolute value of k = (k, ky), i.e.,
k| k2 + K (4)

W = Usoky (5)

and (iii)

with Uy, being the mean z-velocity at infinity.
The solution procedure and initial and boundary conditions used in solving this problem are referred
to [9] and will not repeated here due to limited space. A 2D parallel CE/SE nonlinear Euler solver is used
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in the computation. The parallelization of the CE/SE code is referred to [12]. In the following, numerical
results will be presented for both symmetric and cambered airfoils at three gust frequencies.

2.1 Numerical Results of Problem 3.1

In the following subsections, the RMS pressure on the airfoil surface, and the sound intensity at one and
four chord lengths from the origin, are presented in the following for all cases to examine both the near and
far field solutions. In all figures, the numerical solution of the acoustic pressure non-dimensionalized by v,
is plotted.

2.1.1 Symmetric Airfoil

The symmetric Joukowski airfoil of 12% thickness is analyzed to show the geometrical capability of the
CE/SE method. As shown in Fig. 1, the airfoil is surrounded by an unstructured mesh (Fig. 1(a)) which,
in turn, is embedded in a triangulated structured mesh (Fig. 1(b)). The unstructured mesh is generated
using the code TRUMPET [13]. The mean pressure on the airfoil surface is plotted in Fig. 2 and compared
with the potential code FLO36 solutions. The corresponding acoustic solutions are shown in Figs. 3-5
for the three frequencies. A reasonable agreement between CE/SE and GUST3D solutions is observed for
k; = ky = 0.1 and 1.0, while there are discrepancies at k, = k, = 3.0. However, the CE/SE solutions agree
well with the DSEM solution at the far field for k, = k, = 3.0(Fig. 5(c)).

As an example, a computational domain of —23 < z,y < 23 is used for k; = ky, = 3.0. An unstructured
mesh with 7392 triangles is used in the region of —2 < z,y < 2 while a uniform triangulated structured mesh
formed from 420000 triangles is used in the rest of the computational domain. On the airfoil surface, there
are 168 cells. The RMS pressure solution converges by ¢ = 107" (14000 marching steps). The computation
takes 1.5 hours wall-clock-time using 16 CPUs on a SGI Origin 2000 system with 400 MHz MIPS R12000
processors.

2.1.2 Cambered Airfoil

The airfoil considered here has the same thickness as the symmetric airfoil but with a camber ratio of
0.02 and an angle of attack of 2°. The steady lift is no longer zero and the flow field is more complex. A
larger computational domain is necessary. As an example, a computational domain of —40 < z,y < 40
is used for the case k; = ky = 1.0. Among the 643744 triangular cells that fill the entire computational
domain, 5344 cells are contained in the region of —2 < z,y < 2 (see Fig. 6). There are 168 points on the
airfoil surface. The numerical results are obtained assuming At = T'/1050.

The computed mean pressure on the airfoil surface is plotted in Fig. 7 with the FLO36 solution,
showing that the CE/SE pressure solution on the upper surface is slightly under-predicted. For the two
frequencies k, = ky = 0.1 and 1.0, the unsteady solutions are plotted in Figs. 8-9, respectively. The
CE/SE solutions are very close to the GUST3D solution at k; = k, = 0.1. However larger discrepancies are
observed at k, = k, = 1.0. The CE/SE solution gives reasonably good agreement with the DSEM solution
at k, = ky = 1.0.

The domain size study is performed for the cambered airfoil at k; = ky = 1.0. The near field solutions,
including the RMS pressure on the airfoil surface and the sound intensity at one chord length, obtained in
a smaller domain of —23 < z,y < 23, are identical to the solution presented above. The sound intensity at
four chord lengths is slightly different from the presented solution. The non-reflecting boundary condition
has some reflections that are generated at the far-field boundary, which is also observed in the RMS pressure
contour plot. However the reflection is generally less than 5% of the maximum value of the acoustic field
and has little effect on the accuracy of the numerical solutions.

Grid refinement study is not performed because the mesh used in the computation is fine enough to
capture both the acoustic waves and the gust. About 30—40 mesh points per wave length are necessary for
the CE/SE method since it is 2nd order accurate. In the current computation, about 40 mesh points per
wave length are used.
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3. CATEGORY 3: PROBLEM 2

Consider the rotor-stator interaction problem. The wake generated by the rotor blade at the upstream
of the stator is described as follows:

3

u, = Z an cos[n(kyy — wt)] cos B (6)
n=1
v, = —uytanp (7)

where k, = 117/9,w = 37/4,8 = 44°,a; = 5x1073,a2 = 3x1073, and a3 = 7x10™*. And n = 1,2,3
corresponds to the rotor blade passing frequency (BPF) and its harmonics. Assume the pitches of the rotor
and stator be P, and P,. Then P, = 27 /k, = 18/11, while P; = 2/3 is given. The ratio of the rotor and stator
pitches, P./P;(=27/11), is not unity. In order to impose the periodic boundary condition in the y- direction,
27 passages of the stator vane has to be used in the computation, which is very expensive. An approach to
treat non-equal pitches was developed by Giles in [14] for the analysis of rotor/stator interaction. The same
approach is adopted in the space-time CE/SE method in this work. In the following, the Giles approach and
its validation will be described briefly, which is followed by the numerical results of the benchmark problem.

3.1 Non-equal Pitch Treatment and its Validations

Consider the 2D nonlinear Euler equations described as follows:

Oum Ofm  Ogm
u f+g

St ot gy =0 m=1234 )
Here
ur =p, us=pu, uz=pv, us=F; 9)
fi=pu, f2=pu’® +p, f3=pw, f1=(E +p)u (10)
g1 = pu, g = puv, gz = pv> +p, ga = (E; + p)v (11)

with E; = p/(y — 1) + p(u? + v?)/2. By introducing the coordinate transformation:

=z, Y=y, t'=t-\y (12)

L }1: = with V being the rotor wheel speed, the 2D Euler equations become

where \ =

a0 o oy

=0 (13)

Thus the conservation state variables have changed from uy, t0 %y, — Agm. The numerical scheme for Eq. (13)
can be constructed based on the CE/SE method. The time-marching is performed in the z'-y'-t' coordinate.
Note that at a constant ¢/, the physical time ¢ is not necessarily the same for different y locations. The
periodic boundary condition:

Um(xlaylat,) = Um(mlayl‘l'Ps;tl) (14)
is imposed at the upper and lower boundaries in the y direction of the computational domain.

The problem 2 in Category 3 of the 2nd CAA Workshop is used here to validate the Giles approach with
the CE/SE method. Details of this benchmark problem are referred to [7]. Numerical results obtained by
using 4 passages and single passage are presented in Figs. 10-13. When 4 passages are used, the original Euler
equations are solved, while the Giles approach is used when the single passage is used in the computation.
In this problem, P, = 1.0, P, = 0.8,V = 1.0, then A = 0.2. In Fig. 10, the acoustic pressure contour at one
time instance is plotted in the 4 passages to show the wave pattern. In Fig. 11, the acoustic pressure on the
upper surface of the flat-plate blade at y = 0 is plotted for both solutions obtained by using 4 passages and
single passage, showing a good agreement except a slight difference near the leading edge. The RMS pressure
at the inlet and outlet planes obtained using 4 passages is plotted in Fig. 12 with the analytical solution,
while the corresponding solution obtained using single passage is plotted in Fig. 13, showing slightly better
agreement with the analytical solution because of less numerical reflections from the open inlet and outlet
boundaries.
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3.2 Numerical Results of Problem 3.2

In the current benchmark problem, P, = 18/11,P; = 2/3, and V = 27/44. Due to the numerical
stability restriction [14], two passages of the stator vane are used in the computation. Then A = —10/27. A
mixed triangulated structured and unstructured triangular mesh is used. Approximately 48k triangles exist
in the region of —1.5 < z < 1.5 and 300 points define each blade surface. On the blade surface, the slip
condition is imposed, i.e., the normal velocity is set to be zero. At the inlet plane, the total pressure, total
temperature, and flow angle are specified. The velocity fluctuation (gust) is also imposed. At the outlet, the
back pressure is specified, others are extrapolated from neighboring interior points. In the time-marching,
the mean flow variables at both the inlet and outlet planes are computed at every time period, 7. At the
upper and lower boundaries of the computational domain, the periodic boundary condition is imposed. The
time step At = T'/6200 is used. For one run, it takes around 100T to reach the time periodic state. A Fast
Fourier Transform(FFT) analysis in time is performed based on the time-domain solutions to examine the
sound pressure level at different BPF (n = 1,2,3). And a joint FFT analysis in time and spatial y- direction
is performed to investigate the sound pressure level as a function of rotor harmonic n, spatial mode order
m, and axial location z [15].

The steady-state pressure contour is plotted in Fig. 14. The mean pressure distribution on the blade
surface is compared with the Turbo code solution in Fig. 15, showing a good agreement. The sound pressure
level versus the rotor harmonic n at the six designated positions on the blade surface, three locations at inlet
plane, and three locations at the outlet plane are plotted in Figs. 16 and 17, respectively. It can be seen
that the acoustic response exists only at the excitation frequencies (n = 1,2,3). On the blade surface, the
acoustic wave at n = 1 is dominant, while at the inlet and outlet planes, the sound pressure level at n = 2
becomes the largest. In Fig. 18, the distribution of sound pressure level at different spatial modes along the
z- direction is plotted for n = 1,2, 3, respectively. It shows that the spatial modes m = —32 and 22 at n =1
exponentially decay, and the spatial modes m = 10 at n = 2, m = —42 and 12 at n = 3 propagate both
upstream and downstream. Some oscillations are observed in Fig. 18(c), which needs to be investigated
further. For n = 1,2, 3, the distribution of sound pressure level on the blade surface, inlet and outlet planes
are also plotted in Fig. 19, respectively, to provide a more complete picture of the sound pressure level
distribution.

4. CONCLUSIONS

The problems 1 and 2 in Category 3 have been solved using the space-time (CE/SE) method. Numerical
results of both problems have been presented. For problem 1, the CE/SE solutions are compared with
GUST3D and DSEM solutions. A fairly good agreement between CE/SE and GUST3D solutions at lower
frequencies is achieved. There are some discrepancies between CE/SE and GUST3D solution for higher
frequencies. However, the CE/SE solution is in good agreement with the DSEM solution for these higher
frequencies. For problem 2, no direct comparison between CE/SE and other solutions is made. The CE/SE
solutions are similar to the results presented in [15] and agree with the prediction based on the linearized
theory [16].
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Figure 17: Sound pressure level at three different locations at inlet/outlet planes at n = 1,2, 3.
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Figure 18: The distribution of sound pressure level
along the cascade for different spatial modes (m) at blade surface and at the inlet/outlet planes for n =

n=1,23.
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19: Sound pressure level distribution on the




